Chiral Synthesis

Chiral Synthesis

BOC Sciences' R&D team has years of experience in chiral synthesis to provide comprehensive synthesis services. BOC Sciences focuses on customized synthetic service that can efficiently carry out pilot scale-up, technical verification, and commercial production, ensuring product quality stability and safety, and saving time and cost for customers.

The mirror image of a chiral molecule is an enantiomer. As shown below, a pair of enantiomers is structurally symmetrical but not completely coincident in chemistry.

Chiral Synthesis

Chiral synthesis, or enantioselective synthesis, can be used to discover innovative drugs and materials, and materials and has been widely used in the development of pharmaceutical products and other biologically active substances. For example, axially chiral biaryl is one of the most important activity structures of many drug molecules. It can be synthesized by metal-mediated cross coupling metal-mediated cross coupling, de novo construction of an aromatic ring, point-to-axial chirality transfer or an atropselective transformation of an existing biaryl.

Methods of Chiral Synthesis

Chiral Synthesis


Biocatalysis is the use of biological compounds (enzymes or live cells) to perform and speed up chemical transformations. Advantages of biocatalysts are commonly appreciated by the industry. Yeast is a typical biocatalyst for the chiral reduction of ketones.

Chiral pool synthesis is one of the simplest approaches for chiral synthesis. A chiral starting material is manipulated through successive reactions, often by achiral reagents, to obtain the desired target molecule. So, chiral pool synthesis is necessary if a new chiral species would be created in SN2 reaction.

Generally, enantioselective catalysis involves chiral coordination complexes. The catalysts are rendered chiral by using chiral ligands. A typical example of enantioselective catalysis is asymmetric hydrogenation, which could reduce a wide range of functional groups.

A chiral auxiliary is an organic compound that has the ability to attach to the starting material to form a new compound. Then it can undergo chiral reactions via intramolecular asymmetric induction. At the end, the auxiliary will be removed under conditions that will not cause racemization of the product.

Organocatalysis is a catalysis that increases the rate of a chemical reaction but the catalyst only consists of carbon, hydrogen, sulfur and other non-metal elements. If the organocatalyst is chiral, enantioselective synthesis can be achieved.

Our Services

The chiral auxiliary is a compound or unit that is temporarily added to organic synthesis in order to control the synthesis of stereochemistry. By adding the chiral auxiliary, the prochiral substrate can be transformed into a chiral product. Moreover, through an auxiliary recycle, the auxiliary can typically be recovered for future use.

Building block is a term in chemistry which is used to describe a virtual molecular fragment or a real chemical compound the molecules of which possess reactive functional groups. As for chiral building blocks, they are valuable intermediates in the syntheses of natural products and pharmaceuticals.

Chiral catalysts can be applied in asymmetric synthesis such as alkylation, Diels-Alder reaction, asym-metric reduction, hydroformylation, epoxylation, dihydroxylation. The relationship between the chiral catalyst and the reaction system is just like the relationship between the lock and the key, which is highly selective.

The design of chiral ligands is frequently based on C2-symmetry in order to reduce the number of diastereomeric intermediates and transition states which play a role in the catalytic cycle.

The Chiral resolution, as an important tool in the production of optically active drugs, is a process for the separation of racemic compounds into their enantiomers in the aspect of stereochemistry.

Our Project Management

Chiral Synthesis

At BOC Sciences, we provide various types of synthesis methods including biocatalysis, chiral pool synthesis, enantioselective catalysis, chiral auxiliaries, and organocatalysis. We also use multiple techniques (NMR, LCMS, GCMS, X-ray) to analyze compounds after completing the chiral synthesis. Our experts will work with you to optimize the synthetic route and approaches. According to your needs and the properties of chemical substances, a wide range of custom services are available in our laboratory.


  1. Jolliffe, J. D., Armstrong, R. J., & Smith, M. D. (2017). Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Nature Chemistry9(6), 558.
  2. Silverman, R. B., & Xue, F. (2015). U.S. Patent No. 9,212,161. Washington, DC: U.S. Patent and Trademark Office.
Quote Request
Verification code